Athena Prototype: Status and Current Work

P. Calafiura

Architecture Review

July 10, 2000

What's going on?

- "Early adopters" activities
- Gaudi Kernel development
- EDM design and prototyping
- Scripting
- Longer term discussions

Athena Tutorial Activities *

- ZebraTDRCnv
 - —Read existing SLUG simulation data.
 Done. Needs some polishing
- Tutorial Examples
 - —(at least) 8 available
- Web-based instructions (self-training)
- Installation and tools
 - —recently rewritten, "site-independent"
 - —fully integrated into SRT and our cvs tree

Early Adopters Activities

- Liquid Argon Reconstruction port
 - —done. 1st attempt, went remarkably well!
- Tile Cal Reconstruction
 - —done, similar to LAr
- TileCal TestBeam
 - —starting, Data Views
- Generators integration
 - —ongoing, what is an "Event"?
- Graphics Integration
- XKalman++
 - —1st cut done
- AtlFast
 - —ongoing, several EDM and scheduling issues

Kernel Extensions

- Abstract Event Iterator (done)
- Bounded Properties (done)
- Particle Property Service (ongoing, meeting tomorrow morning)
- Root Histogram Conversion Service(ongoing)
- Sequencing/Filtering (done)

Data Model Integration (May Workshop)

- We more or less agree on
 - —Helpers to support multiple logical "views"
 - —Typed access (compile or run-time)
 - —WORM store: can only add to it
 - ATLFast annotations, extend collections
 - —DataObject relationships: no "forward pointers"
 - very interesting discussion on atlas-sw-architecture
- We have to converge on
 - —What is returned? STL-like iterator, Handle, plain C++ pointer/ref
 - —How do modules define what they want?
 - (Default) Keys, Selectors

Data Model Discussions

Data Models side-by-side *

	BaBar	D0	Gaudi
Data Obj	-	Chunk <coll></coll>	DataObject
Obj Ref	Proxy	LinkIndex	linkID
		LinkPtr <t></t>	SmartRef <t></t>
Key	AbsKey	TKey	string
Handle	?	THandle	~SmartDataPtr
coll/iter	-	Chunk	ObjVector
		Selector	
Trans/Pers	ProxyDict	d0Ref	Opaque
			Addr/CnvSvc
directory	-	-	IDataDir

Views, Handles, Proxies,....

- View: client view of the stores, updated by the stores
- StoreGate: type-safe store access, implements cache policy
- THandle: smart ptr & iterators, basic client interface
- DataProxi: access control, build the DataObject on demand
- DBProxi, ReconProxi, ...: concrete DataProxies

StoreGate Prototype

- Focus on Interface. Use Gaudi TDS to implement it
- Key: optional, distinguish data objects of same type
 Identifier id = at_id.lar_em();
 LArCellContainer:: Key key(id);
- Selector: optional, selection based on DataObject content LArCel | Selector* sel = new LArCel | Selector(100);
- THandle: smart pointer, provide iterator access as well THandle<LArCellContainer> myhandle(sel);
- StoreGateSvc: type-safe access to Gaudi TDS

```
StatusCode sc =
   storeGateSvc()->retri eveObj ect(key, myhandle);
cout << "No of Cells=" << myhandle->size() << endl;
LArCellContainer::const_i terator first =
        myhandle->begin();
LArCellContainer::const_i terator last =
        myhandle->end();
for (; first != last; ++first)
   float energy= (*first)->energy();
```


Scripting

Longer Term Design Discussions

- Integration with analysis tools
 - —event display (prototype)
 - Aravis, XML files(Wired, Atlantis, GraXML)
 - —PAW, ROOT, JAS etc
 - explicit invocation, shared memory, multiple threads?
- Kernel
 - —Application Mgr, Algorithms, Services, Tools and all that
 - extensible FSM (prototype)
 - reconstruction on-demand
 - data-driven processing

Conclusions

- As anticipated, bulk of the effort went into porting and packaging
 - —everything has been a moving target: Physics Software, Red Hat, SRT/CMT and Gaudi itself
- We are having a good time discussing, designing and prototyping, in particular in the scheduling, the scripting and EDM areas...
- ... but we are not forgetting the burgeoning user community, the tutorials and the reviews ...

